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Boosting Shape Registration Algorithms via
Reproducing Kernel Hilbert Space Regularizers

Steven A. Parkison, Maani Ghaffari, Lu Gan, Ray Zhang, Arash K. Ushani, and Ryan M. Eustice

Abstract—The essence of most shape registration algorithms
is to find correspondences between two point clouds and then to
solve for a rigid body transformation that aligns the geometry.
The main drawback is that the point clouds are obtained by plac-
ing the sensor at different views; consequently, the two matched
points most likely do not correspond to the same physical point
in the real environment. In other words, the point cloud is a
discrete representation of the shape geometry. Alternatively, a
point cloud measurement can be seen as samples from geometry,
and a function can be learned for a continuous representation
using regression techniques such as kernel methods. To boost
registration algorithms, this work develops a novel class of
regularizers modeled in the Reproducing Kernel Hilbert Space
(RKHS) that ensures correspondences are also consistent in an
abstract vector space of functions such as intensity surface.
Furthermore, the proposed RKHS regularizer is agnostic to the
choice of the registration cost function which is desirable. The
evaluations on experimental data confirm the effectiveness of the
proposed regularizer using RGB-D and LIDAR sensors.

Index Terms—Range Sensing, RGB-D Perception, Localization.

I. INTRODUCTION

THE shape registration problem is formulated as finding
a rigid body transformation that aligns a set of source

points to a set of target points. Registration algorithms can
be divided into coarse alignment methods and fine alignment
methods. Coarse alignment methods usually do not assume
large overlap nor need an initial transformation, but only
achieve a crude registration. In [1], a Fourier-based method
is proposed to estimate the rotation of limited overlap point
clouds. Recently, a deep neural network is used to encode local
3D geometric structures for coarse registration [2]. This paper
focuses on the fine registration problem.

Most modern fine alignment methods are derived from the
Iterative Closest Point (ICP) algorithm, developed in [3]. ICP
iterates between finding the closest pair of points between
the two sets of points, and minimizing the sum of geometric
residuals between them. The ICP algorithm is extended to
minimize point to line [4], and point to plane residuals [5].

These geometric interpretations of the registration problem
have been extended to probabilistic frameworks. In the Gen-
eralized ICP (GICP) algorithm [6], a Gaussian distribution
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Fig. 1: An illustration of the proposed regularization method. a) Shows the
source point cloud Xs with intensity values. b) illustrates the first stage of
our approach in which we train relevance vectors to approximate the intensity
function fs in c). Finally in d) we minimize the regularized cost function
to find the optimal transformation T. We argue that the proposed RKHS
regularizer is a natural regularizer for the registration problem at hand as it
is agnostic to the choice of the registration cost function and is applicable to
both LIDAR and RGB-D camera measurements.

is fit to the neighboring points of every point in each point
cloud. Meanwhile, pairs of points whose residuals go beyond
a hard threshold will be discarded. The Normal Distribution
Transform (NDT) [7] divides R3 into voxels and fits a Gaus-
sian distribution to all the points that fall into each voxel.
Both algorithms then minimize the (Gaussian) distribution-to-
distribution distance between the target and the source point
clouds.

Purely geometric registration methods, such as the ones
mentioned previously, ignore additional information obtained
by the sensors, such as RGB (color information) or intensity
values. We propose to use these additional channels of in-
formation to regularize the inherently geometric registration
problem. This idea is not new and others have used RGB
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and intensity channels in the registration problem. In [8],
color is added to the nearest neighbor search to find the
point minimizing the 6D distance, and then the 3D geometric
distance between those points is minimized. Color Supported
GICP [9] also adds color to the nearest neighbor search but
defines the distance using the CIELAB color space instead of
RGB. In Multi-Chanel GICP [10] a Gaussian distribution is fit
over the Euclidean position parameters and the color channels
of each point and the same distribution-to-distribution cost
function in [6] is minimized. It also uses the extra channels
in association by constructing a higher dimensional KD-tree.
In Color-NDT [11] a Gaussian mixture model is constructed
from the color channels of the points that fall into a voxel.

In the application of autonomous vehicles, intensity values
from LIDAR have been used for online localization of a
platform vehicle through registration [12], [13]. First, an ortho-
graphic map of LIDAR intensity is generated as a priori using
a Simultaneous Localization and Mapping (SLAM) pipeline.
Then, during online operation, intensity observations from
LIDAR are used to register current observations into the map
prior. This idea can be generalized for applications with other
sensory modalities, such as cameras [14].

Recent work towards direct visual odometry has led to a
different approach to the registration problem using color or
intensity based on the photo-consistency assumption. Instead
of minimizing geometric residuals, these methods minimize
photometric errors [15], [16]. This is done by reprojecting
the source points into the image frame in which the target
points were captured and then minimizing the difference
between RGB or intensity values. However, outliers caused by
brightness changes do exist across different frames. In [15], a
customized sensor model, t-distribution, is introduced to model
the error distribution, compensating the frequency of very large
or very small photometric residuals.

Optical flow and scene flow approaches use similar methods
to estimate relative motion. In optical flow, pixel-wise 2D
relative motion between a pair of images can be estimated
by leveraging an appearance-based constancy metric, such
as brightness constancy, in an energy-minimization frame-
work [17]–[21]. Scene flow tackles a similar problem in
3D with the use of a stereo camera system or active depth
sensing [22]–[27].

Several methods have been developed that use the semantic
label output of classifiers using intensity and RGBD point
clouds as input. In [28] semantic-assisted NDT, which restricts
associates to points in the same class, and semantic-assisted
GICP, which also restricts associations to the same class and
computes the local covariance used in GICP using points of the
same class, were introduced. A soft approach based on GICP
and using expectation maximization with semantic probability
distributions for associations was introduced in [29].

A. Contributions
We develop a novel class of regularizers modeled in the

Reproducing Kernel Hilbert Space (RKHS) that ensures cor-
respondences are also consistent in an abstract vector space
of functions such as intensity surface, illustrated in Figure 1.
The contributions of this work are as follows:

1) assuming the local consistency of point cloud intensity,
we develop a class of regularizers to the Generalized-ICP
registration algorithm over SE(3). To account for possible
mismatches during data association, instead of using the
difference of intensity directly, we learn the point cloud
intensity function from noisy intensity measurements;

2) the open source implementation of the developed method
including the registration and regression algorithms1

3) we evaluate the proposed method using publicly available
experimental data and show the performance relative to
related baselines.

B. Outline

Section II provides the required preliminaries and notation.
The problem formulation is given in Section III. Section IV
discusses our main result on a class of regularized shape
registration algorithms and an instance of RKHS regularization
via sparse Bayesian inference algorithms. Section V presents
the empirical results on LIDAR and RGB-D sensor data.
Finally, Section VI concludes the paper and discusses future
research directions.

II. MATHEMATICAL PRELIMINARIES AND NOTATION

Details of the covered topics in this section are available
in [30]–[33]. We denote ‖e‖2Σ , eTΣ−1e, ‖·‖ denotes the
Euclidean norm, and ‖A‖2F = Tr(ATA) is the Frobenius
norm. The n × n identity matrix and the n-vector of zeros
are denoted In and 0n, respectively. The vector constructed
by stacking xi, ∀ i ∈ {1, . . . , n} is denoted vec(x1, . . . , xn).

A. Matrix Group of Motion in R3

The general linear group of degree n, denoted GLn(R), is
the set of all n × n real invertible matrices, where the group
binary operation is the ordinary matrix multiplication. The 3D
special orthogonal group, denoted

SO(3) = {R ∈ GL3(R)|RRT = I3,detR = +1},

is the rotation group on R3. The 3D special Euclidean group,
denoted by

SE(3) = {T =

[
R p
0T
3 1

]
∈ GL4(R)|R ∈ SO(3), p ∈ R3},

is the group of rigid transformations on R3. Let T̂ ∈ SE(3)
be an estimate of the true transformation T ∈ SE(3). We can
compute the rotational (misalignment angle) and translational
distances (errors) using ‖logm(R̂RT)‖F and ‖p̂ − R̂RTp‖,
respectively, where logm(·) computes the matrix logarithm.
Consistently, the transformation distance that can be directly
computed using d(T1,T2) , ‖logm(T̂T−1)‖F.

B. Representation and Reproducing Kernel Hilbert Space

A Hilbert space is a complete inner product space. Let
(H, 〈·, ·〉H) be a real Hilbert space of functions with the inner

1https://bitbucket.org/saparkison/rkhs_gicp
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product between any two square-integrable functions f, g ∈ H
(or f, g ∈ L2(R, µ)) defined as:

〈f, g〉H ,
∫
f(x)g(x)dµ(x), (1)

where µ is the Lebesgue measure on R. The induced norm by
the inner product is ‖f‖H =

√
〈f, f〉H.

Definition 1 (Reproducing Kernel Hilbert Space [31]). Let
H be a real-valued Hilbert space on a non-empty set X . A
function k : X ×X → R is a reproducing kernel of the Hilbert
space H iff:

1) ∀x ∈ X , k(·,x) ∈ H,
2) ∀x ∈ X , ∀f ∈ H 〈f, k(·,x)〉H = f(x).

The Hilbert space H (Hk) which possesses a reproducing
kernel k is called a Reproducing Kernel Hilbert Space or a
proper Hilbert space.

The second property is called the reproducing property; that
is using the inner product of f with k(·,x), the value of
function f is reproduced at point x. There is a one-to-one re-
lation between a reproducing kernel and its associated RKHS,
and such a reproducing kernel is unique [31]. Therefore, our
problem reduces to finding an appropriate kernel.

Finally, the nonparametric representer theorem [34] ensures
that the solution of minimizing the regularized risk functional
admits a representation of the form

f(·) =
m∑
i=1

αik(·,xi). (2)

III. PROBLEM STATEMENT AND FORMULATION

We wish to find the 3D rigid body transformation that
aligns two point clouds. We use X ⊂ R3 to denote a set of
spatial coordinates returned by a range sensor. The following
definitions are useful throughout the paper.

Definition 2 (Target point cloud). The point cloud Xt which
is considered to be in a fixed reference frame is called the
target point cloud.

Definition 3 (Source point cloud). The point cloud Xs which
T ∈ SE(3) acts on is called the source point cloud.

Definition 4 (Target function). Let Xt ⊂ R3 be a point cloud
which is considered in the fixed reference frame. The function
ft : Xt → R is called the target function.

Definition 5 (Source function). Let Xs ⊂ R3 be a point cloud
which T ∈ SE(3) acts on it. The function fs : Xs → R is
called the source function.

The target and source functions, in general, can represent
any maps. For example, we can learn a function that maps a 3D
point to intensity or curvature. In this work, we only consider
intensity as the output of the regression since both stereo
cameras and LIDARs directly provide such measurements
associated with each point in the point cloud. In addition, the
intensity measurements are also well-defined on sparse areas
of point clouds, unlike curvature.

The action of T on any point xi ∈ X is T · xi = Rxi + p,
where R ∈ SO(3) and p ∈ R3. The likelihood function for

Problem 1 (Hk-regularized shape registration). Let Xt and
Xs be two geometric point clouds and ft and fs be target
and source functions learned using intensity measurements
of their corresponding point clouds, respectively. Given
correspondences between target and source point clouds,
the optimal transformation that aligns source to target can
be computed by solving the following regularized Maximum
Likelihood Estimation (MLE) problem:

minimize
T∈SE(3)

cost(T) + reg(T)

aligning two point clouds sampled from the same environment
depends on data association between them. We define the
association variable I , {ik, jk}nk=1 ∈ I where ik, jk indicate
xtk , xtik ∈ Xt is a measurement of the same point as
xsk , xsjk ∈ Xs, and I is the set of all possible associations
(permutations). The association set I gives the indices of
points in the target and source point clouds which are in-
dependent measurements of the same point. We also intro-
duce a new random variable, R , {rk}nk=1, to represent
the residual where rk , xtk − T · xsk. To emphasize that
the likelihood term includes the action of T ∈ SE(3) on
Xs, we shall write the negative log-likelihood function as
cost(T) = cost(T;R|Xt,Xs, I) , − log p(R|Xt,Xs, I;T).

The ICP approach follows an iterative two-step procedure
for solving the point cloud registration problem: 1) determine
the association I using a Nearest Neighbor (NN) search; 2)
minimize the cost defined using the residual, R, over the
parameter T. In this work, we use a variant of GICP [6] that
we call GICP-SE(3) [29]; the main difference of GICP-SE(3)
is solving the optimization on SE(3) rather than Euler angles
parametrization which improves the convergence, and using a
Cauchy loss function for robust estimation which removes the
need for setting a commonly used distance threshold to accept
or reject nearest neighbor data associations.

Without loss of generality, suppose we learn the target and
source functions using the intensity measurements of their
corresponding point clouds. Assuming the target and source
functions are locally consistent and produce the same output
for the corresponding inputs on the overlapping domain, we
have ft(xtk) = fs(x

s
k) = ft(T · xsk). To compute the distance

between the target and source functions, we can use the
induced norm in the corresponding RKHS as follows.

‖ft − fs‖2Hk
= (ft(T · xsk)− fs(xsk))

2
. (3)

Adding this equality constraint to the original problem and
using the method of Lagrange multipliers, we arrive at the
regularized shape registration problem, as shown in Problem 1.
Further, we define the regularizer term as

reg(T) , λ

n∑
k=1

(ft(T · xsk)− fs(xsk))
2
. (4)

IV. A CLASS OF Hk-REGULARIZED SHAPE REGISTRATION
ALGORITHMS

We model measurements in the target and source
clouds as being drawn from Gaussian distributions, i.e.,
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xtk ∼ N (x̂tk,Σ
t
k), and xsk ∼ N (T · x̂sk,Σs

k), respectively.
Therefore, the residual log-likelihood, excluding the normal-
ization constant, becomes:

cost(T) =

n∑
k=1

‖xtk −T · xsk‖2Ck
, (5)

where Ck , Σt
k + RΣs

kR
T. The analytical gradient of this

cost function in the ambient Euclidean space with respect to
the translation and rotation, respectively, are

∂cost

∂p
=

n∑
k=1

−2C−1k rk,
∂cost

∂R
=

n∑
k=1

−2C−1k rk(x
s
k
T + rTkC−1k RΣs

k).

The original GICP [6] removes residuals larger than a
certain value to ensure that any point in the source cloud
which does not have a counterpart will not affect the so-
lution. To avoid having a hard threshold, we replace this
step with a robust estimator using the Cauchy loss function,
ρα(x) = α2 ln(1 + x

α2 ), where α is a parameter that controls
where the loss begins to scale sublinearly. Similar to the
approach in GICP, the robust estimator diminishes the effect
of outliers while avoiding the removal of potential inliers.
Consequently, our cost function becomes:

costρ(T) ,
n∑
k=1

ρα(||xtk −T · xsk||2Ck
), (6)

and the effect of the loss function on the gradient is trivial to
derive using the chain rule.

Following (2), the functions follows a representation such
as ft(·) =

∑m
j=1 βjkSE(·, zj). The Squared Exponential (SE)

kernel has the form: kSE(x, z) = σ2
f exp(−‖x − z‖2L) where

L is the diagonal matrix of characteristic length-scales and
σ2
f is the signal variance. This is the most common kernel

used in regression techniques using kernel methods [35] such
as Gaussian processes [36] and Relevance Vector Machine
(RVM) [37], and we choose it as part of the model selection
due to its smoothness and being infinitely differentiable.
Consequently, the regularizer term becomes

reg(T) = λ

n∑
k=1

(

m∑
j=1

βjkSE(T · xsk, zj)− fs(xsk))2. (7)

The analytical gradients of this term in the ambient Euclidean
space with respect to the translation and rotation, respectively,
are

∂reg

∂p
= λ

n∑
k=1

m∑
j=1

akβjkSE(zj ,T · xsk)L−1(zj −T · xsk),

∂reg

∂R
= λ

n∑
k=1

m∑
j=1

akβjkSE(zj ,T · xsk)L−1(zj −T · xsk)xsk
T,

where ak , −2
[∑m

j=1 βjkSE(T · xsk, zj)− fs(xsk)
]
.

A. Hk-Regularization via Sparse Bayesian Inference

Given a training set D , {xi, ti}
nt
i=1, ti is the noisy

measurement (here intensity) of the real-valued latent yi for

Algorithm 1 Hk-Regularized Shape Registration

Require: Initial transformation Tinit, target point cloud Xt, source point
cloud Xs, optionally target function ft;

1: TOPT ← Tinit . Initialize the transformation, e.g., I4
2: fs ← rvm_train(Xs) . Target values are corresponding intensity

measurements.
3: if ft not provided then . In sequential data, the previous source

function is the new target function.
4: ft ← rvm_train(Xt)
5: end if
6: converged← false
7: while not converged do
8: T̂← TOPT

9: I ← nnsearch(Xs,Xt, T̂) . Find Association using NN search
10: TOPT ← argminT∈SE(3) costρ(T) + λreg(T) . Optimize over

SE(3)
11: if d(T̂,TOPT) < ε then . Check convergence using distance

threshold ε
12: converged← true
13: end if
14: end while
15: return TOPT

the input xi ∈ R3 (from point cloud), we model the functions
with a linear model, y(x;w), as

y(x;w) ,
nb∑
j=1

wjφj(x) = wTφ(x), (8)

where φi , φ(xi) = vec(1, kSE(x1,xi) . . . , kSE(xnb
,xi))

are nonlinear basis functions. The weight vector, w, is the
model parameter whose distribution and dimension, nb, to be
learned [38], [39]. We note that the choice of this model is
justified by the representation in (2).

The objective is to infer w such that y(x;w) generalizes
well to new inputs x∗ (test data). In this work, we use
RVM [37] for the regression method. The sequential inference
algorithm available for the RVM allows the method to be
scalable while only a few (denoted by nb here) basis functions
with non-zero weights survive (relevance vectors) in the final
model, resulting in a sparse model.

The likelihood and the weight prior are modeled as Gaussian
distributions. As a consequence of Gaussian likelihood and
prior, the weight posterior, w ∼ N (µ,Σ), can be computed
in closed-form as follows.

Σ = (A + σ−2ΦTΦ)−1, (9)

µ = σ−2ΣΦTt, (10)

where σ2 is the likelihood variance, A , diag(α1, . . . , αnb
),

the hyperparameters, α1, . . . , αnb
, are the inverse variances of

the weight priors, and Φ , [φ1, . . . ,φnt
]T.

For implementation, we followed the original software
provided by Mike Tipping 2.

B. Algorithmic Implementation

Algorithm 1 shows our implementation for solving the
regularized form of the registration problem. In line 2 we
learn the parameters of fs(·) by maximizing the marginal
likelihood, as presented in Subsection IV-A, following the

2http://www.miketipping.com/downloads.htm
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Fig. 2: Results of the proposed method versus the benchmark algorithms
on sequences 01 of the KITTI Odometry dataset. Above are the point clouds
projected into the same reference frame using the estimated Hk-GICP-SE(3)
odometry. This sequence is one of the more challenging ones, and we found
that our proposed method had less transformation error by regularizing the
cost on point cloud intensity.

sequential approach presented in [40]. The regularization term
is added to the cost function in line 10. Finding the association
is done using a NN search in line 9. The optimization is solved
over SE(3) using the Conjugate-Gradient solver in the open
source optimization library Ceres Solver [41].

TABLE I: Parameters used for our algorithm on each dataset, similar values
were chosen when possible or tuned on the same sequences. Parameters of
the benchmark algorithms are reported in the software repository.

Hk-GICP-SE(3) Parameters KITTI TUM RGB-D

Convergence Threshold ε 1e−4 1e−4
Outer Max Iterations 50 50
Inner Max Iterations 100 100
Solver Backend Ceres Solver Ceres Solver
Solver Algorithm CG CG
Jacobian Analytical Analytical
Parameter Representation SE(3) SE(3)
Distribution NN 20 20
Cauchy Loss α 9.0 2.0
Regularizer coefficient λ 20 5.0
Kernel signal variance σ2

f 12.5 2.5
RVM Training Iterations 200 200

Fig. 3: A detailed view of sequence 00 reconstructed using Hk-GICP-SE(3)
odometry, labeled with intensity. Details such as lane lines and road signs are
clearly visible, suggesting a good alignment.

V. EXPERIMENTAL RESULTS

We now evaluate the proposed algorithm using LIDAR and
RGB-D sensors. We use GICP-SE(3) [6], [29] as the baseline
for comparison, since it is the algorithm we applied our
regularizer too. We also compare to NDT [7], another method
that does not use intensity or color, and Multichannel GICP
(MC-GICP), a method that incorporates extra information into
both the association and cost function [10]. For datasets where
RGB data is available, we also compared to Color Supported
GICP (GICP 6D) [9]. This method uses the distance in the
CIELAB space to search for nearest neighbors. For NDT and
GICP 6D we used the open source implementations available
in the Point Cloud Library [42], while for MC-GICP we re-
implemented the algorithm following the description in the
paper. Our implementation of MC-GICP is available with the
provided code for this paper, along with parameters used for
each algorithm. In the first experiment, LIDAR data is from
KITTI odometry dataset [43]. In the second experiment, we
use RGB-D data from the TUM RGB-D SLAM dataset [44] to
generate point clouds where the intensity values are computed
using RGB measurements. Table I lists the parameters used
for our algorithm.

A. LIDAR: KITTI Odometry dataset

The KITTI benchmark provides evaluation metrics that
compute error per distance traveled, or drift, as a percent for
translation and °/m in rotation. We used our proposed method
to train functions, fs and ft, on the intensity values provided
by the LIDAR sensor. Parameters for all methods were tuned
on sequence 04.

1) Odometry Analysis: We first evaluated the proposed
method versus our comparison methods in frame-to-frame
odometry using the provided error metrics, an example is
shown in Figure 2. Since all these methods use local gradient-
based solvers, we seed the next frame with the solution of the
previous, assuming there will not be a large change in velocity.
The results for sequences 00 through 10 are presented in
Table II. We found that the proposed method performed better
overall, with a translation drift of 2.27% versus 2.66% for the
GICP-SE(3), 3.08% for MC-GICP, and 5.07% for NDT. For
the sequences that GICP-SE(3) had good results, the proposed
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TABLE II: Results of the evaluation of Hk-GICP-SE(3) using the KITTI odometry benchmark as evaluated on the drift in translation, as a percentage (%),
and rotation, in degrees per meter(°/m). Best performances not including ties are in bold. Parameters were tuned on sequence 04 for both approaches, and
so 04 is not included in the average.

00 01 02 03 04 05 06 07 08 09 10 Avg

Hk-GICP-SE(3) t (%) 1.96 7.26 2.39 1.43 2.61 1.74 1.29 1.40 1.98 2.15 2.63 2.28
r (°/m) 0.0154 0.0203 0.0151 0.0230 0.0256 0.0148 0.0151 0.0173 0.0165 0.0162 0.0181 0.0160

GICP-SE(3) t (%) 1.96 13.2 2.84 1.44 2.58 1.74 1.30 1.42 1.99 2.14 2.63 2.66
r (°/m) 0.0154 0.0180 0.0179 0.0230 0.0254 0.0149 0.0151 0.0174 0.0166 0.0162 0.0182 0.0165

MC-GICP t (%) 2.19 17.8 3.04 1.84 4.45 1.79 1.56 1.65 2.26 2.30 2.65 3.08
r (°/m) 0.0174 0.0445 0.0164 0.0218 0.0246 0.0143 0.0159 0.0192 0.0175 0.0155 0.0170 0.0180

NDT t (%) 1.69 49.94 3.38 3.07 1.59 2.54 0.90 2.06 4.29 2.57 3.97 5.07
r (°/m) 0.0161 0.0333 0.0234 0.0262 0.0468 0.0271 0.0060 0.0311 0.0328 0.0207 0.0369 0.0249

Fig. 4: Average translation and rotation error vs speed on the KITTI Odometry
dataset. We can see from the translation error thatHk-GICP-SE(3) has better
results as the distance between point clouds increases.

Hk-GICP-SE(3) performed similarly well without doing no-
ticeably better. However, when GICP-SE(3) performed poorly,
our method had noticeable improvement, suggesting the inten-
sity regularizer contributes to minimizing the effect of poor
geometrical registration (Figure 3). All methods showed good
performance in terms of the rotation error results, even though
the proposed method performed slightly better on average,
0.0160 °/m versus 0.0165 °/m for the GICP-SE(3) approach.

Figure 4 shows the average translation and rotation errors
versus speed. We observed that the proposed method performs
better at higher speeds, suggesting the intensity regularization
aided to expand the basin of convergence of the GICP algo-
rithm. In addition, the proposed approach is competitive with
many of the methods on the KITTI odometry leader board.
Most of those methods are SLAM or filtering systems that
take into account observations from multiple frames for each
position estimate. It is a good indication that our frame-to-
frame approach is already competitive with these methods, and
leaves open the possibility of incorporating this registration
approach into a SLAM system for future work.

2) Convergence Analysis: We also used the KITTI Odom-
etry dataset to evaluate the per-frame convergence of our
proposed approach. To do so, we initialized the methods with

the identity transformation and compared the initial error to the
final error. The results of this analysis can be seen in Figure 5.

We can see that the proposed approach converges more
consistently than both the purely geometric methods and MC-
GICP which also incorporates the intensity information. MC-
GICP only incorporates intensity information locally to each
point, while our sparse model is a global approximation of the
intensity, which in turn allows the regularizer to improve the
convergence properties of the base algorithm.

We also analyzed the computation time each algorithm
takes, shown in Figure 6. Since our method includes training
the functions online, it does take longer than the compared
methods. It is approximately four times slower than GICP-
SE(3) and seven times slower then NDT. There are compro-
mises that can be made when constructing the regularizer, such
as fewer RVM training iterations, that would make our method
approach GICP-SE(3) in terms of speed and performance.
There is also a potential for parallelization in training the
sparse model as well as the cost function evaluation. Partic-
ularly if we change from the sequential approach presented
in [40] to the batch solution first derived in [37]. However,
such approaches would come at the cost of runtime when
only a single thread is available for computation. The many
independent but identical operations in batch-RVM training
and cost function evaluation make implementing a version for
the fine-grained parallelism of a GPU attractive as future work.
None of the methods evaluated were quick enough to operate
at the update rate of the LIDAR sensor used in this dataset
(10 Hz). But the increased convergence performance of our
approach suggest that it would work better when frames are
dropped in an online system.

B. RGB-D: TUM RGB-D SLAM dataset

The TUM RGB-D SLAM dataset [44] was collected indoors
using a Microsoft Kinect and a motion capture system for
ground truth trajectory. We used data from four sequences:
Freiburg 1 desk, Freiburg 2 desk, Freiburg 3 no-structure-
texture-far, and Freiburg 3 no-structure-texture-near-with-loop.
Parameters for all methods were tuned on Freiburg 1 xyz
and Freiburg 1 rph. Depth images were associated with RGB
images using the provided python program. We trained the
regularizer functions on the intensity obtained by averaging the
RGB channels of the images. The results presented in Table III
show the per frame drift of the five methods using the provided
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Fig. 5: Scatter plots of initial error versus final error of the various methods on KITTI Odometry sequence 00 through 10. Our approach more consistently
converged to the ground truth transformation.

Fig. 6: Timing comparison for the various algorithms on the KITTI Odometry
dataset for the 23900 consecutive pairs in all sequences, 00 through 10.

relative pose evaluation. Our approach does well in the two
scenes with geometric structure (Freiburg 1 desk and Freiburg
2 desk) but show lower performance on the scenes that only
have texture and no structure (both Freiburg 3 sequences).
This presents the trade-off of the sparse Bayesian approach.
The sparsity of support of the learned intensity functions,
while suitable for convergence, performs poorly when there
is no structure or local refinement. This is further illustrated
in Figure 7 which provides sample images from one of the
desk scenes and one of no structure scenes. It also includes
CDF plots of translational error from the two desk scenes and
from the two no structure scenes.

VI. CONCLUSION

To reduce the effect of mis-associations in the registration
problem, we presented an algorithmic approach to improve
shape registration using regularizers represented in an RKHS.
We presented results on real-world datasets using LIDAR and
RGB-D sensors that showed promising improvements over
transformation error when compared to related methods.

In the future, we could incorporate the proposed approach
into a SLAM or smoothing framework, potentially a regular-
izer function could be trained on a local area, which could be
then used to localize into and incrementally updated. We could
also look at utilizing the probabilistic nature of the sparse
Bayesian inference regularizer to make it more cohesive with
the probabilistic motivation of GICP. And finally, regularizing

Fig. 7: Cumulative distribution plots for translational error from the TUM
RGB-D SLAM dataset, comparing Freiburg 1 desk and Freiburg 2 desk to
the Freiburg 3 no structure sequences.

to multi-dimensional information channels could be a useful
direction to explore, particularly RGB [45].
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